Physiological significance of troponin T binding domains in striated muscle tropomyosin.

نویسندگان

  • Ganapathy Jagatheesan
  • Sudarsan Rajan
  • Natalia Petrashevskaya
  • Arnold Schwartz
  • Greg Boivin
  • Grace Arteaga
  • Pieter P de Tombe
  • R John Solaro
  • David F Wieczorek
چکیده

Striated muscle tropomyosin (TM) plays an essential role in sarcomeric contraction and relaxation through its regulated movement on the thin filament. Previous work in our laboratory established that alpha- and beta-TM isoforms elicit physiological differences in sarcomeric performance. To address the significance of isoform-specific troponin T binding regions in TM, in this present work we replaced alpha-TM amino acids 175-190 and 258-284 with the beta-TM regions and expressed this chimeric protein in the hearts of transgenic mice. Hearts that express this chimeric protein exhibit significant decreases in rates of contraction and relaxation when assessed by ex vivo work-performing cardiac analyses. There are increases in time to peak pressure and in half-time to relaxation. These hearts respond appropriately to beta-adrenergic stimulation but do not attain control rates of contraction or relaxation. With increased expression of the transgene, 70% of the mice die by 5 mo of age without exhibiting gross pathological changes in the heart. Myofilaments from these mice have no differences in Ca(2+) sensitivity of percent maximum force, but there is a decrease in maximum tension development. Our data are the first to demonstrate that the troponin T binding regions of specific TM isoforms can alter sarcomeric performance without changing the Ca(2+) sensitivity of the myofilaments.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Mapping the functional domains within the carboxyl terminus of alpha-tropomyosin encoded by the alternatively spliced ninth exon.

Tropomyosins are highly conserved, coiled-coil actin binding proteins found in most eukaryotic cells. Striated and smooth muscle alpha-tropomyosins differ by the regions encoded by exons 2 and 9. Unacetylated smooth tropomyosin expressed in Escherichia coli binds actin with high affinity, whereas unacetylated striated tropomyosin requires troponin, found only in striated muscle, for strong acti...

متن کامل

Functional and evolutionary relationships of troponin C.

Striated muscle contraction is initiated when, following membrane depolarization, Ca(2+) binds to the low-affinity Ca(2+) binding sites of troponin C (TnC). The Ca(2+) activation of this protein results in a rearrangement of the components (troponin I, troponin T, and tropomyosin) of the thin filament, resulting in increased interaction between actin and myosin and the formation of cross bridge...

متن کامل

A Drosophila melanogaster model of diastolic dysfunction and cardiomyopathy based on impaired troponin-T function.

RATIONALE Regulation of striated muscle contraction is achieved by Ca2+ -dependent steric modulation of myosin cross-bridge cycling on actin by the thin filament troponin-tropomyosin complex. Alterations in the complex can induce contractile dysregulation and disease. For example, mutations between or near residues 112 to 136 of cardiac troponin-T, the crucial TnT1 (N-terminal domain of troponi...

متن کامل

Fragments of Rabbit Striated Muscle a - Tropomyosin

The interactions of a variety of large fragments of rabbit skeletal muscle a-tropomyosin, prepared as previously described, with troponin-T and a soluble tropomyosin-binding fragment of troponin-T (CB1) have been investigated by affinity chromatography and gel filtration. No specific interactions between NHz-terminal fragments encompassing residues 1-189 with troponin, troponin-T, or CB1 immobi...

متن کامل

Role of Actin C-Terminus in Regulation of Striated Muscle Thin Filament

In striated muscle, regulation of actin-myosin interactions depends on a series of conformational changes within the thin filament that result in a shifting of the tropomyosin-troponin complex between distinct locations on actin. The major factors activating the filament are Ca(2+) and strongly bound myosin heads. Many lines of evidence also point to an active role of actin in the regulation. I...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • American journal of physiology. Heart and circulatory physiology

دوره 287 4  شماره 

صفحات  -

تاریخ انتشار 2004